门户-光伏|太阳能|PV|技术|质量|认证|标准
操千曲而后晓声,观千剑而后识器。看过大量的电流图像之后,我们发现,所有的接入的支路的电流形态是一个抛物线,在晴天的时候,连续而饱满。这是由于太阳在一天的时间内,日出,正午,日落,是一个自然而连续的过程,作用在面板上之后,产生的电流同样是自然而连续的。如下图可以看到。 而没有接入面板的支路则仍然处于小幅波动状态,如下所示。 从图片看来,最明显的差别在于一个是有规律的、饱满的,一个是没有规律的、随机波动的。人眼可以很轻易的辨别其中的差别。如果可以使用机器学习的方法把每个图片进行识别,就能够鉴别出是否接入。 从数据看来,最明显的差别就在于不同电流值的个数。可以看到晴天已接入的支路的电流值从0A - 4.5A均匀分布,而晴天未接入的电流值则分布散乱而无规律。发现这样的差别,我们就可以通过每路支路电流不重复的点的个数,即可判断是否接入。 四、数据解决方案的实现与验证 基于上述观察与发现,我们运用机器学习的深度算法,判断出分界点的阈值、计数点的时间区间,以及计算时采用的数据来源,终于得到一个通用的解决方案,并对方案的准确性进行了验证。 首先,我们对得到授权的汇流箱数据进行计算,得到接入的信息,并与站主提供的备案信息进行比较,得到结果如下: 从图中可以看到,计算结果与备案结果相比,有超过90%的相同,在与线下确认之后,发现实际情况与计算结果相同。也就是说,通过对数据的分析与挖掘,我们发现了备案信息与实际情况存在不符。 五、总结 一个清晰准确的电站拓扑结构图是电站数据化的基础,是电站数据应用的基石。我们通过对汇流箱的接入数据进行分析与挖掘,找到了一个线上判断汇流箱接入情况的解决方案,并且对大量的汇流箱进行了可行性验证,可以相信,在经过不懈的努力之后,我们从数据空间里找到了一个解。即通过对汇流箱的数据进行深入的分析与挖掘,可以准确判定该汇流箱的接入路数,进而可以描绘出该电站的拓扑结构图,为后面的数据分析提供坚固的支撑。 |