门户-光伏|太阳能|PV|技术|质量|认证|标准
钙钛矿太阳能电池因其所需的原材料储量丰富,制备工艺简单且可以采用低温、低成本的工艺实现高品质的薄膜而拥有诱人的前景。这些有着高质量晶体结构的薄膜甚至可以与在高温下以高成本获得的硅片的晶体质量媲美,实现柔性化和“卷对卷”式的规模化生产。 为了挑战硅在太阳能电池领域的主导地位,制备钙钛矿电池还需要解决一些关键问题。目前,实验室中的电池样品只有指甲盖大小,其安全性和长期稳定性也有待大幅提升——对于研究人员而言,这将是一场艰苦的战斗。 效率之战 在此前对钙钛矿太阳能电池能量转换效率的报道中,曾有过转换效率为20.1%的报告记录,而晶体硅太阳能电池的单元转换效率最高值为25.6%。那么,为什么太阳能电池无法将太阳光能量100%地转化为电能?为什么研究人员认为钙钛矿太阳能电池将有望超过硅所创下的效率记录? 答案的关键就在材料内部可激发的电子和可自由移动的电子中。当阳光照射太阳能电池时,一些电子会吸收能量而脱离原子束缚。充满能量的受激电子会穿过材料中的晶格向一边移动,或从电池的一端逸出,或遇上一个障碍或陷阱从而释放出无用的热量。对于硅太阳能电池中的硅材料来说,通常需要采用高达900℃的高温加热处理以便尽可能地降低缺陷浓度。然而钙钛矿只要约100℃就可以去除绝大多数晶体缺陷。此时,被光激发的电子同样能够顺利地逸出钙钛矿,且不至于因为撞上过多的障碍物而损失太多的能量。 但对于任何基于半导体材料(例如硅或钙钛矿)制成的太阳能电池而言,太阳光能转化为电能的效率总有一个上限,这主要由半导体的“带隙”性质决定。带隙指的是使电子脱离束缚成为自由电子所需的最小能量。不同半导体通常具有不同的带隙,由此会导致一个两难境地出现:带隙越小,电池吸收的太阳光光谱范围就越大,也就可以利用更多的光能来激发电子,但每个电子的能量也会更低。即使太阳能电池材料的带隙处于最理想的大小,也只能转化约33%的太阳能。 在制造钙钛矿时,研究者们可以通过改变原料的成分来调节它的带隙宽度,因此钙钛矿太阳能电池在效率上超越硅电池是可能的。研究者还可以将带隙宽度不同的钙钛矿层叠加在一起变成叠层钙钛矿太阳能电池。有预测指出,基于叠层结构的太阳能电池可以将太阳能的利用率提高到46%。 |