门户-光伏|太阳能|PV|技术|质量|认证|标准
“需求灵活化”验证取得进展 在美国西弗吉尼亚州劳雷尔山,沿着山脊设置有61座风力发电设备,占地长约20公里。这是2011年10月启动的98兆瓦风电场。在该风电场,作为并网设备设置有美国最大级别的32兆瓦锂离子电池。设置并运用该蓄电池的是AESEnergyStorage公司。通过与蓄电池充放电联动,随时调整随着风力状况时刻变动的风力发电输出,从而维持了电力公司要求的电能质量,将电力输入电网。 AESEnergyStorage自2007年创立以来,包括在建设施在内,在美国的5个供电运用辖区等共设置及运营着多达76兆瓦的系统蓄电池。相关需求非常大,该公司目前正在开发500兆瓦的蓄电池系统。 在美国,随着风力发电及太阳能发电的增加,用于吸收其变动的辅助用途燃气发电站及蓄能设备需求日益增大,这一趋势已经凸显。AESEnergytorage的业务日益扩大,就是一个例证。除了蓄电池,还有将成本更低的飞轮及压缩空气用作能源储存手段的尝试。 不过,增设辅助电源及蓄能设备,需要在电网上配备开工率较低的设备。这样会使得电力系统整体运营成本提高,最终导致电价上升。因此,在欧美智能电网实证试验中,优先进行的尝试是根据供电实现“需求灵活化”,也就是从技术及制度角度验证控制用电方拥有的电力设备。 高速ADR备受期待 在北美,“需求响应”(DR)正日益普及,具体内容是,如果预计电力供求会出现紧张,就在1天前通知用电大户等,请其抑制电力需求,并支付相应费用。 还有将这一体制应用于增加风力及太阳能发电可并网量的尝试。并不是在1天前要求抑制电力需求,而是根据天气变化进行灵活应对,以分钟为单位事先提出要求,委托用电方抑制电力需求。这样一来,如果手动操作电力设备就会来不及,因此在调节电力需求方面需要实现需求响应自动化。一旦接到需求响应指令,按照事先设定的程序,计算机就会自动控制电力设备,迅速削减电力需求。这称为“高速自动需求响应”(自动需求响应:AutomatedDR,ADR)。 加拿大的EnbalaPowerNetworks公司目前正在向电力公司提供利用高速自动需求响应控制废水处理设施泵的“Gridbalance”服务。由于吸收了输出变动,也会向废水处理设施支付相应费用,因此具备一定的经济价值。 美国劳伦斯伯克利国家研究室2012年7月公布了以“高速自动需求响应与可再生能源整合”为题的报告。据该报告推算,如果以整个加利福尼亚州的商业及产业设施中可调节输出功率的电力设备为对象实施高速自动需求响应,就可抑制0.18~0.9吉瓦的电力需求(表1)。 如果针对高速自动需求响应进行适量投资,可进行调节的电力需求就会增加至0.42~2.07吉瓦。设想可进行高速自动需求响应的设备为空调、照明、冰柜及冰箱等。据称利用高速自动需求响应调节电力需求所需的成本仅为使用蓄电池的10分之1。不过,要达到加利福尼亚州“占电源构成33%”的采用可再生能源目标,需要进行3~5吉瓦的供求调节。还需要用于补充高速自动需求响应、以天然气火力发电及蓄能设备为基础的辅助服务。 利用“虚拟发电站”调节供求 在加紧利用可再生能源取代化石燃料的德国,也在实施名为“E能源”的大规模实证项目,积极开展配合风力及太阳能输出功率变动的需求控制。德国在2012年已经能够利用可再生能源满足约17%的电力需求。该国政府提出了到2020年和2050年,将这一比例提高到35%和80%的目标。目前已经有调查结果显示,在今后10年内可能提高到40%。 E能源项目的目的在于,验证能够实现高比率利用可再生能源和以低成本稳定供电的技术及制度。在6个地区,总共有约5000个住宅和企业参加。 在库克斯哈文市,为了应对风力发电产生的电力变动,实际验证了利用商用冷库及市营游泳池等的大型压缩机调节电力需求。尝试使冷库等与电力交易市场联动,在风力发电量较多、电力价格较低时启动压缩机,为冷库内进行充分制冷,在电价上升时停止买电,自动停运压缩机等。 结果显示,即使将用于吸收风力发电输出功率变动的火力发电站的使用率减少15%,也能维持地区的供需平衡,同时,冷库运营商还削减了6~8%的电费。并且,参加实证的工厂中设置有热电联产系统,能够在充分考虑风力发电运转状况及电力市场价格的同时,优化控制热电联产系统的运转,从而使电费削减了16%。 |