门户-光伏|太阳能|PV|技术|质量|认证|标准
具有气体温度、流量流量范围宽,调节精度高,且功耗低等优点。从而使硅锭生长的界面更加平稳,提高电池的转化效率。 2、铸锭工艺的优化 通过对热场温度的优化以及晶粒的细化,使晶体在初期的成核得到控制,在结晶过程中具有稳定的结晶速度和过冷度,从而提高了硅晶体的少子寿命,降低了硅晶体的内部缺陷,提高了多晶硅电池效率。 2.1大晶粒的制备 大晶粒学名成为准单晶(Monolike)是基于多晶铸锭的工艺,在长晶时通过部分使用单晶籽晶,获得外观和电性能均类似单晶的多晶硅片。这种通过铸锭的方式形成单晶硅的技术,其功耗只比普通多晶硅多5%,所生产的单晶硅的质量接近直拉单晶硅。简单地说,这种技术就是用多晶硅的成本,生产单晶硅的技术。准单晶产品的优势:转换效率高于普通多晶,接近直拉单晶电池片;与普通多晶电池片相比LID基本无变化,性能稳定;比起普通多晶,组件功率提升明显,单位成本降低;可封装265瓦(60片排布)大组件。 2.2调整热场结构,优化工艺 由于不同的温度梯度会导致不同的晶向产生,如果需要做到降低成核缺陷,需要清楚<100>的成核机理,经过查询,大于186度的温度梯度差,才能满足形成<100>晶向的温度要求。 通过改进工艺,调整热场结构,生长速度得以控制。改进后的多晶铸锭生长段配方后,晶体的生长速度更加趋于平稳,这样有利于杂质的均匀向上分凝。而与此同时保证界面的平稳性可以控制杂质的平稳析出。在控制界面水平则可以实现成核的一致性,及达到均匀晶粒的细化技术。对于整个生长过程,界面温度微凸是有利的,有利于杂质的向外排出,但太凸,会导致边缘16块受损严重。通过稳定热场,优化生长工艺,改进生长界面实现了降低缺陷密度,提高硅晶体少数载流子寿命的目的,最终达到了提高硅晶体电池效率的目标。 3、其它方面 3.1坩埚对电池效率的影响 目前市场上推出的高效坩埚,将坩埚表面的二氧化硅的纯度进一步提高,在硅料在铸锭炉进行融化时使坩埚分解出更少的杂质进入到硅料中,从而可以减少硅块中杂质的比例,提高电池的转化效率。 此外坩埚在喷涂中应该注意一些事项:搅拌时间不得少于10分钟,喷涂温度控制在40-70℃之间,严禁湿喷,随时清理脱落的氮化硅。 3.2装料工艺对电池效率影响 装料过程会对铸锭产生影响,进而影响电池转换效率。注意以下方面:颗粒料、粉料单埚不超过20Kg,尽可能将粉料装于坩埚中部不接触坩埚壁;装料过程注意防尘,不接触金属,轻拿轻放,不要碰坏喷涂层;大块料避免放至内立棱附近,应尽量在距离内立棱10cm以外,在每层装料内立棱附近留有的空间,最好用碎块料填充,也可以不填充;装完料后,坩埚的运转中应避免颠簸;用吸尘器吸去推车上、石墨板上的残留物质在坩埚四边固定好石墨档板四边石墨档板的边必须与石墨底板边相吻合,且石墨档板与底板平面相互垂直,对边两档板与坩埚距离保持一致,用手旋上螺丝,不要太紧,拧紧后回转1/3~1/2。 4、总结 多晶铸锭对电池效率产生很大的影响,多晶硅片的生产可以很好地提升电池的转化效率,让太阳能电池具有更加良好的市场竞争力。2010年,多晶硅片的转换效率约为16%,价格约为每片3~4美元。当时,都具备一定竞争力而为市场所接受。到了2012年年底,多晶硅片的转换效率提高到17.2%左右,价格降到了每片0.8美元左右。此时多数其他硅片技术已逐渐失去竞争力,市场占有率不断降低。到2014年,多晶硅片的转换效率预计将提高到18%以上,而成本降至每片0.5美元以下。光伏硅片生产技术的发展趋势表明,将来的硅片市场应该是高效多晶硅锭的市场。研究多晶铸锭成为今后的趋势,对太阳能电池的影响越来越会受到更多人的重视。 |