门户-光伏|太阳能|PV|技术|质量|认证|标准
EVA 紫外老化失效模式 EVA 处于玻璃和背板的保护中,老化主要来自紫外线照射,早期的 EVA 由于配方原因,长期户外使用会出现黄变,目前已基本解决。光伏组件在户外经过长期曝晒后,EVA 会发生黄变、脱层等不良现象。需要注意的是,EVA 在老化后对紫外线的阻隔能力下降,会引起背板的黄变及脱层,这是非常危险的。
不同厂家 EVA 紫外老化后在紫外光区透光率变化趋势也不同,如下图所示。 图四 EVA 老化后在紫外光区域透光率变化趋势 背板紫外老化失效模式 要说背板的紫外老化模式,得先了解背板外层的材料,一般来说,背板的内外两层最好都是含氟聚合物,含氟聚合物之所以具有不同于其他材料的特殊性能,是因为氟原子的引入,使含氟聚合物异常稳定。氟原子位于元素周期表第 Ⅶ 主族,原子序号为 9,核外电子的分布为 1S2 2S2 2P5,也就是说,氟原子核外电子全部分布在第一、第二层原子轨道上,离原子核比较近,原子核内的9个正电荷牢固地将核外电子吸引在其周围。这就决定了氟原子的原子半径比较小,故而原子核吸引电子的能力就大,即电负性大。当氟原子与碳原子组成共价键时,由碳原子提供的共享电子也进入第二层轨道上,所以 C-F 键的键长比 C-H 键的键长和 C-C 键的键长短的多,因此 C-F 键的键能比较大。氟原子结构的这一特性就决定了含氟的膜层的化学稳定性高。 相关数据证明,有机化合物中所含的氟原子越多,C-F 键的键长越短,键能越大。例如 CH3F 的 C-F 键长为 0.142nm,相应的 C-F 键的键能为 389KJ/mol,而 CF4 的 C-F 键的键长为 0.136nm,相应的键能为 543KJ/mol。后者比前者的键能大的多,所以由其组成的含氟膜层化学稳定性更高。 另外,随着含氟有机化合物中氟原子的增加,相应的 C-C 键的键长也随之缩短,其键能也有所增加,所以含氟有机化合物中的化学键不容易发生断裂,在宏观上则表现为其耐腐蚀性、耐化学药品性及热稳定性好。 太阳对有机化合物起破坏作用的是可见光到紫外光部分,尤其是紫外光部分,这部分光波的波长在 200~760nm 的范围内,其中 400~760nm 波段为可见光部分,200~400nm 波段为紫外光部分,具体波长与能量关系见表二。
表二 紫外光到可见光范围内波长及能量关系 |