门户-光伏|太阳能|PV|技术|质量|认证|标准
2 弯曲度形成的原因 2.1 弯曲度形成的原因 太阳能电池晶体硅片弯曲度形成的主要原因在于铝硅线膨胀系数远远大于硅线膨胀系数,铝硅的线膨胀系数23×10-6k-1[2],硅的线膨胀系数只有3.5×10-6k-1,随着温度的降低,铝硅的收缩远远大于硅片的收缩,使硅片表面承受一种压应力,从而产生弯曲度。而弯曲度的形成时间是从第六个阶段以后产生的,因为,在第六个阶段以前,晶体硅片基体上的铝硅合金处于液体状态,因温度下降引起的铝硅基体和硅基体收缩差异形成的切应力难以在硅片表面加载,只有当铝硅液相转变成固体状态以后,才能承受这种应力,从而产生弯曲度。 2.2 弯曲度的理论模型 R.J. Roark[3]采用简化的一维二层模型对弯曲度进行了分析,弯曲度的表达式如下: 其中,其中δ为弯曲度;L为电池片宽度;αSi,αAl,分别为Si 层和Al层的热膨胀系数;Tf为铝硅共晶温度;T为测试温度;dSi,dAl,分别为硅层和铝层的厚度;ESi,EAl分别为硅层和铝层的弹性模量。从(1)式可以看出,影响弯曲度大小的因素主要包括:电池片宽度、铝层和硅层的厚度、铝硅熔体共晶温度、铝层和硅层的弹性模量和热膨胀系数。 3 目前解决弯曲度的基本方法 3.1 铝背场湿重 云南师范大学太阳能研究所的申兰先[4]研究了铝浆湿重对电池片弯曲度的影响,实验在170微米的硅片上进行,发现随着铝浆厚度的减小,电池片的弯曲度逐渐下降,当二道铝浆厚度从27微米降至20微米时,弯曲度由1mm降为0.75mm。德国康斯坦茨大学物理系的A.Schneider也对此进行了研究[5],发现当铝浆印刷厚度由50降至30μm以下时,电池片的弯曲度都保持在1mm以下,但是当印刷厚度降至35μm以下时,电池片的电性能开始恶化,主要由于铝层厚度影响铝背场深度,从而影响钝化效果。如果铝印刷量太少,不能形成闭合的铝背场,部分硅片表面没能形成铝背场,增加了背表面复合。 3.2 烧结温度 目前关于烧结工艺对电池片弯曲度的研究较少。浙江大学材料科学与工程系硅材料国家重点实验室的孙振华[6]通过在快速热处理炉中模拟铝背场烧结过程,研究了升温速率、烧结温度和降温速率等烧结工艺参数对电池片弯曲度的影响,实验以AlSi共晶点温度577℃为分界点,将降温过程分为高温段和低温段。 研究结果表明,电池片的弯曲度随升温速率的增加而增大,随降温速率的增大而减小,并且升温过程对弯曲度的影响远小于降温过程,如图5所示。 在高于AlSi共晶点温度的高温段,电池片弯曲随降温速率的变化幅度很大,表明该温度段下降温速率对电池片弯曲的影响更大,而低温段的影响不明显;实验还研究了峰值温度和保温时间对电池片弯曲度的影响,发现随着峰值温度的升高电池片的弯曲度升高,当峰值温度超过800℃以上时,弯曲度急剧增加,见图6;对于保温时间对弯曲度的影响,发现对比无预处理,铝熔化前的保温处理,电池片的弯曲度减小了,铝熔化后的保温则使电池片弯曲度增大,且预处理温度越高,弯曲度的增速越快,如图7。 这表明,铝熔化前,烧结工艺参数主要影响添加剂的燃烧特性。从而影响了铝颗粒外壳氧化层的厚度,进而间接影响了铝颗粒间的衔接,铝熔化后,则直接影响了铝颗粒之间的衔接。之所以升温速率对电池片弯曲影响不明显,就是因为升温过程的低温段和高温段对电池片弯曲的影响相反造成的。 图5 升温速率对电池片弯曲度影响 图6 烧结温度对电池片弯曲度影响 图7 不同温度保温对电池片弯曲度影响 |